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Within Lloyds Banking Group Security Operations Centres (SOCs) undertake the correlation and 

analysis of security events to protect the organisation from external cyber-attacks. Predominantly, 

these data are activity logs sourced from many heterogenous systems using multiple and 

evolving communication protocols (e.g. TCP,DNS, HTTP, properties of transferred files, etc.).   

 

Anomaly detection is the identification of items, events or observations which do not conform to 

an expected pattern or other items in a data set [1]. These detection approaches are commonly 

used across many industries to identify abnormal events, or patterns of events which are 

subsequently investigated to identify malicious activity. 

 

Network intrusion is a common route for cyber criminals to gain access to an organisation’s 

systems to undertake activity that will result in disruption, data theft and/or fraud. Networks are 

monitored with information collected in real time for elements such as IP Addresses, ports, 

communication protocols, number of connections made and bytes/type of data transferred. Over 

time these data present us with a large number of interactions between elements and amount to 

very high volumes with heterogenous properties across a single dataset. 

 

A well-recognised approach to extracting features from network intrusion data is to build a graph 

database to capture security objects (nodes) and their semantic links (edges) [2, 3]. These 

approaches can be used more generally in wider cybersecurity data also [4]. From these graphs 

many algorithms can be used to create meaningful features that can be used to develop anomaly 

detection models – path properties, centrality properties, community properties etc. [5] 

 

Given this you should attempt the following: 

1. Take the pre-processed and labelled csv dataset we have provided and create a graph 

model. This data is a simplified version of the raw packet capture (PCAP) data found in 

the UNSW-NB15 Computer Security Dataset [6, 7].  

2. Using your graph model derive a number of features that capture the topology of the 

graph well. 

3. Test out your features using a supervised anomaly detection model to try and predict as 

many actual attacks as possible while reducing false positives.  

4. Review your engineered features with reference to the anomaly model results and try to 

improve model performance by trying new or adjusted features. 

 

We recommend using Neo4J Desktop edition to build then explore your graph and start to 

engineer features [8]. 

 

To test how well your engineered features are working we suggest you use a simple, supervised 

anomaly detection technique (e.g. K-nearest neighbour). When you test new features try to avoid 

tuning your model differently so you can assess the improvements due to the features changing 

rather than the model.  
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There are a number of useful anomaly detection algorithms available as part of the scikit-learn 

toolkit [9]. 

 

The focus of this project should be the algorithms used to create novel features from the graph 

database rather than the anomaly detection approach used. 

 

We are hopeful that your research will contribute to the continuous evolution of Lloyds Banking 

Group’s Cyber programme. 
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