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Abstract

To numerically study complex and diverse differential equations, the need for automatic gener-
ation of specialized code is imperative. This relieves the need for users to write specialized code
and also affords flexibility in being able to solve various differential equations without reliance on
specialized libraries. In this report we use software from the FEniCS Project to study finite ele-
ment discretizations of a shallow shelf model and a hybrid L1L2 model of glaciological flow. For
the shallow shelf model, FEniCS allows for linearization of the variational form of the problem
so that we may directly apply a Newton solver to find a solution. Newton’s method is unstable
for high-resolution domains and so we introduce a first-order approximated Newton’s method.
For the hybrid model, it is necessary to construct a fixed-point iteration on velocity to compute
a solution to the problem. This process is made efficient FEniCS’s use of JIT compilation, which
allows for reuse of generated code through the iterations.
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1 Introduction

Partial differential equations (PDEs) are used in myriad disciplines to model physical phenom-
ena, including fluid dynamics, electromagnetism, and mathematical biology. Analytic techniques
to solve PDEs are useful but limited to being able to solve only very simple models. This has
resulted in the continuous development of software and libraries developed for the solution of
PDEs. The finite element method is a technique for converting PDEs into a computable form.
There is a balance to be struck with these numerical methods, with a common belief that high
performance requires specialization of libraries suited for only particular problems without the
flexibility to adapt to new demands. Over time the belief in the necessity of specialization has
waned with developments in automatic generation of optimized code [14, 15, 16, 26]. While there
exist various software aimed at automating the finite element method, including FreeFEM++
[28] and Sundance [22], in this report we will focus on the FEniCS Project, an open-source
software for solving PDEs [6].

The advantage of FEniCS over other software is that it uses compiler technology to generate
software where possible instead of just compiling and integrating hand-coded software libraries
[30]. A critical discovery was an optimized method of computing finite element matrices that
made finite element computation as efficient as finite different computation while preserving the
geometric generality unique to the finite element method [15, 16]. FEniCS also makes use of
Just-in-Time (JIT) compilation [21], which allows the user to modify and quickly re-simulate the
models used in the program. Thus, FEniCS allows a much larger array of models to be explored.
As the first system to implement the full Periodic Table of Finite Elements [2], FEniCS also
allows users to implement more complicated models utilizing elements that were not previously
available. Additionally, FEniCS supports generating finite element meshes and also supports
interfacing with components in different domains, for example, importing meshes from other
packages such as Gmsh [7].

To demonstrate the use of FEniCS in solving real-world problems, we will examine PDE systems
for several simplified glaciological models.

1.1 Glaciological models

We now present a brief overview of glaciological models which are studied in Chapters 3–4.

Figure 1 shows the cross section of a grounded ice sheet with attached floating ice shelf in a
Cartesian coordinate system. Here x and y are in the horizontal plane and z is positive upward.
Then the first-order momentum balance equations in Cartesian coordinates are given by the
Blatter-Pattyn equations [4, 27]:

∂x
[
ν(4ux + 2vy)

]
+ ∂y

[
ν((uy + vx)

]
+ ∂z(νuz) = ρgsx, (1.1)

∂x
[
ν(vx + uy)

]
+ ∂y

[
ν((4vy + 2ux)

]
+ ∂z(νvz) = ρgsy, (1.2)

ν =
B

2

[
u2
x + v2

y + uxvy +
1

4

(
uy + vx

)2
+

1

4
u2
z +

1

4
v2
z

] 1−n
2n

, (1.3)

where u and v are velocities in the x and y directions, respectively, ν is the effective viscosity
of the ice, s is the elevation of the upper ice surface, ρ is the density, g is the gravitational
acceleration, n is set equal to 3, and B is the temperature-dependent rate factor. Simplified
models reduce the complexity of this problem at the cost of physical realism. Let us now examine
two simplified glaciological models: the Shallow Shelf Approximation and a hybrid L1L2 model.

The Shallow Shelf Approximation (SSA) is an effective “sliding law” where basal stress is zero
and longitudinal stresses dominate [5]. It is a standard model for ice stream flow where the
sliding velocity is large. It is a vertically integrated, 2-dimensional model derived in [24] of lower
computational dimension than (1.1)–(1.3) that still indicates the effects of horizontal stress.
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However, it does not capture the effect of vertical shear and is less effective in regions where
vertical variations in speed are important. A full mathematical formulation of the model is given
in Chapter 3 and in [10].

The hybrid L1L2 model [8] accounts for vertical shear in the stress balance. It is a 2-dimensional
simplification of (1.1)–(1.3). By vertically integrating these equations, a system of 2-D elliptic
PDEs for the horizontal components of the velocity are derived. A more detailed mathematical
formulation is provided in Chapter 4 and in [8]. This formulation is similar to other momentum
balances such as that in [13], but the derivation from [8] is from a variational principle. The
numerical implementation of this model solves the system of PDEs in an iterative loop. This
scheme is similar to the “iteration on viscosity” method of solving the SSA balance [23].

Figure 1: Geometry of glacier with attached ice shelf1.

1.2 Outline of thesis

The remainder of this report is organized as follows. In Chapter 2 we examine the use of FEniCs
to solve partial differential equations. We focus on the DOLFIN and UFL libraries and study
key tols needed to define and solve weak forms of PDEs. We then solve several demo problems,
including the Poisson problem and the heat equation, to explore the problem-solving abilities of
FEniCS. In Chapter 3, which largely follows [25], we present an implementation of the shallow
shelf model. We examine the use of a first-order method that is used as an approximation
to Newton’s method. In Chapter 4 we develop an implementation of the hybrid L1L2 model
presented in [8]. Finally we conclude this report with Chapter 5, where we summarize the results
and provide possible avenues for future research.

1Taken from [12]: Fig. 5.1
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2 FEniCS

In this section we will discuss the use of FEniCS, a platform for solving PDEs using the finite
element method. We will focus in particular on the libraries DOLFIN and UFL. DOLFIN
is the main programming interface and problem-solving environment of FEniCS. It generates
problem-specific code and computes the automated solution of differential equations using the
finite element method. DOLFIN uses UFL to express variational forms in a language close to
mathematical notation. After introducing key features of these two libraries, we discuss several
problems that demonstrate how to use these libraries to solve well-known differential equations.

2.1 Code generation

2.1.1 DOLFIN

This section largely follows [21]. DOLFIN is a library available as a part of the FEniCS Project
that computes the automated solution of PDEs using the finite element method. It is the main
programming interface and problem-solving environment of the FEniCS Project. DOLFIN relies
on a form complier to generate problem-specific code. The expression of variational forms is
handled by the UFL library, as discussed in Section 2.1.2.

Automated code generation allows DOLFIN to efficiently assemble a variational form of any
rank (i.e., of any number of arguments) from a large class of variational forms. In order to have
efficient code generation, it is necessary to isolate the parts of the program for which code must
be generated, and make use of reusable library components in a general purpose language for the
remaining parts of the program. DOLFIN partitions user input into two subsets: data that may
only be handled efficiently by special purpose code, and data that can be handled efficiently by
general purpose library components, which may be implemented as reusable library components
in a general purpose language. The former may include a finite element variational problem and
the finite elements used to define it. The latter includes data structures and algorithms for linear
algebra, computational meshes, and representations of functions. The assembly algorithm, and
in particular the innermost loop of the assembly algorithm, varies for each problem depending
on, but not limited to, the particular formulation and choice of finite element function space
of each particular problem. As an efficient and general solution, DOLFIN utilizes reusable
components at higher levels and relies on a form compiler to generate the code for the innermost
loop from a user-defined variational form. If this form compuler is implemented as a just-in-time
(JIT) compiler, it is possible to automatically generate, compile, and execute generated code at
run-time on demand.

The central classes of DOLFIN include the linear algebra classes, mesh classes, finite element
classes, and function classes. The interaction between these classes is visualized in Figure 2.
DOLFIN assembles a user-defined variational form on any mesh for a wide range of finite el-
ements using any user-defined or built-in linear algebra backend. The linear algebra classes
consist mostly of wrapper classes for external libraries, including PETSc [3], uBLAS [31], and
MTL4 [11]. Because the linear algebra interface is implemented based on C++ polymorphism,
DOLFIN is able to implement a common assembly algorithm for all matrices, vectors, and
scalars for all linear algebra backends. Additionally, the assembly algorithm is common for all
simplex meshes in one, two, and three space dimensions. DOLFIN supports a wide range of
finite elements, as detailed in Section 4.3 of [21], which are not included in a library of finite
elements but rather, implemented by a form compiler.

Finite element assembly The assemble function is one of the free functions provided by
DOLFIN. Given a variational form, this function assembles a matrix from a bilinear form, a
vector from a linear form, and a scalar value from a functional form. The DOLFIN assembly
algorithm is both general and efficient due to the automated generation of code for the evaluation
of the element tensor, as well as for the mapping of degrees of freedom. Thus, the algorithm may
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Figure 2: UML diagram of the central components and classes of DOLFIN2.

call the generated code on each cell of the mesh regardless of the complexity of the form, since
it simply provides coefficient and mesh data to the generated code and assembles the computed
results. The algorithm for computing the element tensor is determined by the form compiler.

To assemble a Form a, the user may simply use the statement

A = assemble(a)

and the bilinear form will be given by A.

Solving variational forms The solve function is another free function provided by DOLFIN,
and is utilized in many of the problems examined further in this report. It may be used to
solve either linear systems or variational problems. A linear variational problem of the form
a(u, v) = L(v) for all v may be solved with the statement

solve(a == L, u, ...)

where a is a bilinear form, L is a linear form, and u is a Function that contains the solution.
Other optional arguments may be supplied to specify boundary conditions or solver parameters.
Solver parameters include the absolute and relative tolerance and the maximum number of
iterations. An example of usage of this statement is given below:

solve(a == L, u, bcs=bcs ,

solver_parameters ={"linear_solver": "lu","maximum_iterations":1e3})

where bc is some specified boundary condition.

We may also solve nonlinear variational problems of the form

F (u; v) = 0 for all v

with the statement

solve(F == 0, u, ...)

where F is linear in the test function v but may be nonlinear in u, and u is a Function that
contains the solution. Optional arguments that may be included are boundary conditions, the
Jacobian, or solver parameters. If the Jacobian is not supplied then it is computed through
automatic differentiation of the residual F. An example of usage of this statement is given
below:

solve(F == 0, u, bcs , J=J,

solver_parameters ={"linear_solver": "lu"},

form_compiler_parameters ={"optimize": True})

2Adapted from Fig. 3 of [21].
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2.1.2 Unified Form Language (UFL)

This section largely follows [20]. The Unified Form Language, or UFL, is a domain specific
language that defines the language used to express PDEs as finite element discretizations of
variational forms. It also provides algorithms that the form compiler can use to simplify the
compilation process and create output that is usable by DOLFIN to efficiently assemble linear
systems and compute solutions to PDEs.

Two main goals motivating the development of UFL are automatic differentiation of expressions
and forms and improving the performance of the form compiler to handle more complicated
equations efficiently.

Defining forms Forms expressed in UFL are intended for finite element discretization followed
by compilation to efficient code for computing the element tensor. In general, UFL is designed
to express forms of the generalized form

a(w1, . . . , wn;φ1, . . . , φr) =

nc∑
k=1

∫
Ωk

Ick dx+

ne∑
k=1

∫
∂Ωk

Iek ds+

ni∑
k=1

∫
Γk

Iik dS.

Here, Ω denotes the entire domain, ∂Ω denotes the external boundary of the domain, and Γ
denotes the set of interior facets of the triangulation. Integration is expressed by multiplication
with a measure, with UFL supporting the measures dx, ds, and dS which correspond to cell
integrals, exterior facet integrals, and interior facet integrals respectively.

Consider the Poisson equation given (17.8)–(17.9) of [20] with two different boundary conditions
on ∂Ω0 and ∂Ω1:

a(w;u, v) =

∫
Ω
w∇u · ∇v dx, (2.1)

L(f, g, h; v) =

∫
Ω
fv dx+

∫
Ω0

g2v ds+

∫
Ω1

hv ds. (2.2)

The two forms above can be expressed in UFL as

a = w*dot(grad(u), grad(v))*dx

L = f*v*dx + g**2*v*ds(0) + h*v*ds(1)

The form arguments are divided into two groups: the basis functions {φ1, . . . , φr} and the
coefficient functions {w1, . . . , wn}, which are all functions in some discrete function space with a
basis. A form with one or two basis function arguments, i.e., r = 1, 2, is called a linear or bilinear
form respectively and is assembled to vectors and matrices respectively. A form depending only
on coefficient functions, i.e., r = 0 is called a functional. The programs included in this project
deal with these three forms.

Defining expressions Basis function arguments represent any function φj in the basis of the
finite element space V δ,j :

φj ∈ {φjk}, V δ,f = span{φjk}.

Functions in the finite element space are represented by Argument. The ordering of the argu-
ments to a form is determined by the order in which the form arguments were declared in the
UFL code. However, we can use TestFunction and TrialFunction in declarations of functions
instead of Argument in order to ignore the relative ordering of the arguments. Argument is only
needed for forms with arity r > 2, a case not addressed in this report. In the code excerpt
below, phi, v, and u are all functions in the finite element space V:

phi = Argument(V)

v = TestFunction(V)

u = TrialFunction(V)
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Coefficient functions are represented by Coefficient, where each coefficient function w rep-
resents a discrete function in some finite element space V δ, usually a sum of basis functions
φk ∈ V δ with coefficients wk:

x =

|V δ|∑
k=1

wkφk.

Coefficient problems can then be declared as

w = Coefficient(V)

c = Constant(cell)

It is also possible declare mixed finite element spaces of the form V δ = V δ,0 × V δ,1 and create
form arguments in the mixed finite element space. We can then extract subfunctions using
split, which can handle arbitrary mixed elements:

V = V0.ufl_element () * V1.ufl_element ()

u = Coefficient(V)

u0 , u1 = split(u)

A shorthand notation for splitting arguments is

v0 , v1 = TestFunctions(V)

u0 , u1 = TrialFunctions(V)

f0 , f1 = Coefficients(V)

Differential operators UFL implements derivatives with respect to three kinds of variables:
spatial derivatives, user-defined variables, and derivatives of a form or function with respect to
the coefficients of a discrete function, i.e., a Coefficient or Constant.

Spatial derivatives of the form ∂f
∂xi

can be expressed as:

df = Dx(f, i)

# or , equivalently

df = f.dx(i)

where df represents the derivative of f in the spatial direction x i. UFL also has several
compound spatial derivative operators: div, grad, and curl.

User-defined variables can be used to represent arbitrary expressions. For example, let g be an
arbitrary expression assignmented to a variable v and an expression f(v) be defined as a function
of v. It is then possible to implement differentiation of f with respect to the user-defined variable
v:

g = sin(cell.x[0])

v = variable(g)

f = exp(v**2)

h = diff(f, v)

For this example, we have g = sinx0, f = ev
2
, and h = ∂f(v)

∂v .

Differentiating forms The form operator derivative declares the derivative of a form with
respect to a Coefficient representing coefficients of a discrete function. This is important in
Chapter 3 where we linearize a nonlinear variational form. The derivative of a form L with
respect to the coefficients of a function w is calculated by

a = derivative(L, w, u)

where u is a basis function argument in the same finite element space as w.

Consider for example a finite element space V δ with some basis, a function w in V δ, and a
function f = f(w) we want to minimize, i.e., we seek

F (w;φi) =
∂f(w)

∂wi
, i = 1, . . . ,

∣∣∣V δ
∣∣∣
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where V δ = span{φk}. Using the functional f(w) =
∫

Ω
1
2w

2 dx, this can be implemented as

v = TestFunction(V)

w = Coefficient(V)

f = 0.5 * w**2 * dx

F = derivative(f, w, v)

where we find F = w*v*dx

2.2 Demo problems

Let us now consider some example problems that explore the functionality of FEniCS as de-
scribed in the previous section. These example problems are adapted from demo problems
presented in [18] and [19].

2.2.1 Poisson equation

In this section we use FEniCS to solve the Poisson equation, the boundary value problem given
by

−∇2u(x) = f(x), x in Ω (2.3)

u(x) = uD(x), x on ∂Ω, (2.4)

where u(x) is the unknown function, f(x) is a prescribed function, ∇2 is the Laplace operator,
Ω is the spatial domain, and ∂Ω is the boundary of Ω [19, Chapter 2].

We must first find the variational formulation of this problem. The general procedure to do this
is to multiply the PDE by a test function v, integrate the resulting equation over the domain Ω,
optionally perform integration by parts of terms with second-order derivatives, and optionally
apply natural boundary conditions. Applying this procedure to the Poisson equation, we first
multiply (2.3) by the test function v and integrate over the domain Ω:

−
∫

Ω
(∇2u)v dx =

∫
Ω
fv dx. (2.5)

Note that we use dx to represent the differential element for integration over the domain Ω and
ds to represent the differential element for integration over ∂Ω We now apply integration by
parts to the second-order derivative of u:

−
∫

Ω
(∇2u)v dx =

∫
Ω
∇u · ∇v dx−

∫
∂Ω

∂u

∂n
v ds, (2.6)

where n is the outward normal direction on the boundary.

We next apply the requirement that the test function v vanishes on the parts of the boundary
where the solution u is known, which for the Poisson problem is given by (2.4). Therefore this
means that v = 0 on the boundary ∂Ω, and so (2.6) simplifies to

−
∫

Ω
(∇2u)v dx =

∫
Ω
∇u · ∇v dx, (2.7)

which we substitute into (2.5) to obtain the variational form of the original boundary-value
problem: ∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx. (2.8)

In order to have a unique solution u that lies in some infinite-dimensional function space V ,
called the trial space, we must require that (2.8) holds for all test functions v in some suitable
space V̂ , called the test space.
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The final variational problem is stated as: find u ∈ V such that∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx ∀v ∈ V̂ , (2.9)

where the trial and test spaces V and V̂ , respectively, are defined as

V = {v ∈ H1(Ω) : v = uD on ∂Ω},
V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

The finite element method finds an approximate solution of the continuous variational problem
described by (2.9) by replacing the infinite-dimensional function spaces V and V̂ by discrete
trial and test spaces V δ ⊂ V and V̂ δ ⊂ V̂ . Thus, the discrete variational problem is stated as:
find uδ ∈ V δ such that ∫

Ω
∇uδ · ∇v dx =

∫
Ω
fv dx ∀v ∈ V̂ δ. (2.10)

We have now defined a unique approximate numerical solution of the Poisson equation as a
discrete variational problem that FEniCS can automatically solve.

For the implementation of this problem, let us choose u(x, y) = 1 + x2 + 2y2 as the solution to
the problem. Then it must be that uD(x, y) = 1 + x2 + 2y2 and f(x, y) = −6.

Let us now examine an implementation of the above problem in FEniCS 2019.1.0, modified from
demo poisson.py from Section 16 of [1].

1 from fenics import *

2

3 # create mesh and define function space

4 mesh = UnitSquareMesh (8,8)

5 V = FunctionSpace(mesh ,’P’ ,1)

6

7 # define boundary conditions: u_d = 1 + x^2 + y^2

8 u_d = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’,degree =2)

9

10 # function to define boundary value on boundary

11 def boundary(x,on_boundary):

12 return on_boundary

13

14 bc = DirichletBC(V,u_d ,boundary)

15

16 # define test and trial spaces

17 u = TrialFunction(V)

18 v = TestFunction(V)

19 f = Constant ( -6.0) # rhs of strong form

20 lhs = dot(grad(u),grad(v))*dx

21 rhs = f*v*dx # rhs of weak form

22

23 # compute solution

24 u = Function(V)

25 solve(lhs == rhs ,u,bc) # u contains the answer

26

27 # writing out the answer:

28 File("poisson1.pvd") << (u,0.0) # 2nd arg is timestamp

The first line

from fenics import *

imports classes from the FEniCS library. The line

mesh = UnitSquareMesh (8, 8)

8
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defines a uniform finite element mesh over the unit square with the parameters specifying that
the square should be divided into 8 × 8 rectangles. Each rectangle is divided into a pair of
triangles so that the total number of triangles, or cells, in the mesh is 128, and the total number
of vertices in the mesh is 9 × 9 = 81.

After the mesh is created, we create a finite element function space V with the statement

V = FunctionSpace(mesh ,’P’ ,1)

The first argument specifies the mesh on which the function space is to be defined. The second
argument specifies the type of element, where in this case ’P’ indicates the standard Lagrange
family of elements. The third argument specifies the degree of the finite element.

In the variational problem we have the trial and test spaces V and V̂ , with the only difference
between them being their boundary conditions. In FEniCS the boundary conditions are not
specified as part of the function space, so the test and trial functions may be constructed on the
same space, V:

u = TrialFunction(V)

v = TestFunction(V)

We then define the boundary condition u = uD on ∂Ω with the statement

bc = DirichletBC(V,u_d ,boundary)

The first argument is the function space on which the boundary condition is defined. The second
argument u D is an Expression object that defines the values of the solution on the boundary.
Expression objects are used to represent mathematical functions and are constructed with a
string containing a mathematical expression written with C++ syntax. The typical construction
for u D is

u_D = Expression(formula , degree =1)

where formula is a string containing a mathematical expression in C++ syntax. In this problem,
we have uD(x, y) = 1 + x2 + y2, which is written in FEniCS as

u_d = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’,degree =2)

The degree is chosen to be 2 so that u D may represent the exact quadratic solution to the test
problem. The third argument boundary is a function or object that defines points belonging to
the boundary where the boundary condition should be applied:

def boundary(x,on_boundary):

return on_boundary

This is a boolean function that returns True if the given point x lies on the Dirichlet boundary
and False otherwise. The argument on boundary is True if x is on the physical boundary of
the mesh. Therefore, since we seek to return True for all points on the boundary, it suffices to
return the supplied value of on boundary.

We now define the source term f = −6:

f = Constant ( -6.0)

We can now define the variational problem:

a = dot(grad(u),grad(v))*dx

L = f*v*dx

where a is the bilinear form a(u, v) and L is the linear form L(v).

FEniCS can now compute the solution, which we store in the variable u with the statements:

u = Function(V)

solve(a == L,u,bc)

Here we have redefined the variable u, which was initially used as a TrialFunction to represent
the unknown in the bilinear form a. It is now redefined as a Function object used to represent
the solution. Finally, FEniCS handles solving the finite element variational problem using the
solve command as detailed in Section 2.1.1.
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2.2.2 Heat equation

In this section we expand upon the properties of FEniCS explored with the Poisson problem
by studying the time-dependent heat equation [19, Chapter 3.1]. The main idea is to solve a
sequence of variational problems while applying standard time-stepping methods.

The time-dependent heat equation is given by:

∂u

∂t
= ∇2u+ f in Ω× (0, T ], (2.11)

u = uD on ∂Ω× (0, T ], (2.12)

u = u0 at t = 0, (2.13)

where u varies with space and time, the source function f and the boundary balues uD may also
vary with space and time, and the initial condition u0 is a function of space.

To solve this time-dependent PDE, we may discretize the time derivative by a finite difference
approximation. Then at each discrete timestep, we will have a stationary problem which we
may turn into a variational formulation and solve in the same fashion as the Poisson problem.
Let us use the superscript n to denote a quantity at time t = tn. Then at time level t = tn+1,
we have (

∂u

∂t

)n+1

= ∇2un+1 + fn+1. (2.14)

Let us then approximate the time derivative using a backward Euler discretization:(
∂u

∂t

)n+1

≈ un+1 − un

∆t
, (2.15)

where ∆t is a unit of discretized time. We then obtain the backward Euler discretization of the
heat equation:

un+1 − un

∆t
= ∇2un+1 + fn+1. (2.16)

We now rearrange (2.16) so the left-hand side contains all the terms with the unknown un+1

and the right-hand side contains only computed terms:

u0 = u0, (2.17)

un+1 −∆t∇2un+1 = un + ∆tfn+1, n = 0, 1, 2, . . . (2.18)

We thus have a sequence of stationary problems for un+1, which we may solve given u0. To get
the weak form of this problem, we multiply (2.18) by a test function v ∈ V̂ and integrate over
the domain Ω. If we let the variable u denote un+1 then we obtain∫

Ω
(uv + ∆t∇u · ∇v) dx =

∫
Ω

(un + ∆tfn+1)v dx, (2.19)

which can be written as

a(u, v) = Ln+1(v),

where the bilinear form a(u, v) is the left-hand side of (2.19) and the linear form Ln+1(v) is the
right-hand side.

We must also approximate the initial condition given by (2.17), which can be turned into the

10



variational problem ∫
Ω
ux dx =

∫
Ω
u0v dx. (2.20)

This is exactly the Galerkin L2 projection of the initial value u0 onto the finite element space.
In FEniCS, we can calculate u0 by using the project or interpolate function on u0.

For the implementation, let us consider the test problem u(x, y, t) = 1 + x2 + αy2 + βt. Then
by substituting this into the heat equation we find that we must have the boundary value
uD(x, y, t) = 1 +x2 +αy2 +βt, the initial value u0(x, y) = 1 +x2 +αy2, and the source function
f(x, y, t) = β − 2− 2α.

Let us now consider an implementation of the time-dependent heat equation using FEniCS
2019.1.0, modified from ft03 heat.py from the section “The heat equation” of [18].

1 from fenics import *

2

3 T = 2.0

4 num_steps = 10

5 dt = T/num_steps

6

7 alpha = 3; beta = 1.2

8

9 mesh = UnitSquareMesh (10 ,10)

10 space = FunctionSpace(mesh ,’P’ ,1)

11

12 u_d = Expression(’1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t’,degree=2,alpha=alpha

,beta=beta ,t=0)

13

14 def boundary(x,on_boundary):

15 return on_boundary

16

17 bc = DirichletBC(space ,u_d ,boundary)

18

19 # define u_n: u_0 is the projection of the initial u_d onto the function space

20 u_n = project(u_d ,space)

21

22 # define test and trial spaces

23 u = TrialFunction(space)

24 v = TestFunction(space)

25 f = Constant(beta - 2 - 2* alpha)

26

27 F = u*v*dx + dt*dot(grad(u),grad(v))*dx - (u_n + dt*f)*v*dx

28 a,L = lhs(F),rhs(F)

29

30 u = Function(space)

31 t = 0

32

33 for n in range(num_steps):

34 t += dt

35 u_d.t = t

36

37 solve(a == L,u,bc)

38

39 # Update previous solution

40 u_n.assign(u)

The new consideration in this problem is the variation in time, which affects the boundary
condition uD(x, y, t). To address this, we may create an Expression object that has time t as
a parameter:

u_d = Expression(’1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t’,degree=2,alpha=alpha

,beta=beta ,t=0)

Here t is initialized as t = 0, and it can be updated later by
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u_d.t = t

The boundary and the boundary conditions are implemented in the same way as with the Poisson
problem. We then use the variable u to denote the unknown variable un+1 at the new time step
and u n for un. As stated previously, we can calculate u0 by using the project or interpolate
function on u0. In this case, we have chosen project:

u_n = project(u_d ,space)

although we could have alternatively used

u_n = interpolate(u_d ,space)

project(u,space) finds the Galerkin L2 projection of u onto the discretized finite element
space space. Therefore, it results in approximate values at the nodes. interpolate(u,space)
evaluates u at each degree of freedom of space and so ensures (to machine precision) values at
the nodes.

Previously for the Poisson problem, we directly specified the bilinear form a and the linear form
L. For this problem, we demonstrate a convenient feature of FEniCS where we may define an
abstract formulation of the form

F (u; v) = 0

and supply F to FEniCS. FEniCS will then automatically determine which terms in F go into
the bilinear form and which go into the linear form. For our problem, we can rearrange (2.19)
into the form

Fn+1(u; v) =

∫
Ω

(
uv + ∆t∇u · ∇v − (un + ∆tfn+1)v

)
dx, (2.21)

so that
Fn+1(u; v) = 0.

Then a and L can be constructed simply by defining F :

u = TrialFunction(space)

v = TestFunction(space)

f = Constant(beta - 2 - 2* alpha)

F = u*v*dx + dt*dot(grad(u),grad(v))*dx - (u_n + dt*f)*v*dx

a,L = lhs(F),rhs(F)

Finally, as before, we use u to store the solution, and we implement a time-stepping loop to
compute the solution at each time:

u = Function(space)

t = 0

for n in range(num_steps):

t += dt

u_d.t = t

solve(a == L,u,bc)

# Update previous solution

u_n.assign(u)

Note that in the last line, the variable u n is used to store the solution at the previous time
step. It is necessary to use the assign member function here in order to have u n as a separate
variable from u that stores the values of u.

2.2.3 Nonlinear Poisson equation

In this section we study how to solve nonlinear PDEs using FEniCS.

12



Let us consider the nonlinear Poisson equation presented in [19, Chapter 3.2]:

−∇ ·
(
(q(u)∇u)

)
= f, (2.22)

in the domain Ω with u = uD on the boundary of the domain ∂Ω. We assume q(u) is not
constant in u so the equation is nonlinear. To find the variational formulation, we multiply the
PDE by a test function v ∈ V̂ and integrate over the domain. The variational formulation of
the problem is: find u ∈ V such that∫

Ω
(q(u)∇u · ∇v − fv) dx = 0 ∀v ∈ V̂ , (2.23)

and

V = {v ∈ H1(Ω) : v = uD on ∂Ω},
V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

We can define the left-hand side of (2.23) as F (u; v):

F (u; v) =

∫
Ω

(q(u)∇u · ∇v − fv) dx (2.24)

As before, we discretize the problem by restricting V and V̂ to a pair of discrete spaces.

For the implementation, take q(u) = 1 + u2 and u(x, y) = 1 + x + 2y. Then by plugging these
equations into (2.22) we find we must have f = −10x− 20y − 10.

Let us now examine an implementation of the above problem in FEniCS 2019.1.0, modified from
demo nonlinear-poisson.py from Section 14 of [1].

1 from fenics import *

2

3 def q(u):

4 ’’’

5 Return nonlinear coefficient q(u) = 1 + u^2

6 ’’’

7 return 1 + u*u

8

9 mesh = UnitSquareMesh (8,8)

10 space = FunctionSpace(mesh ,’P’ ,1)

11

12 # Define boundary value u_d

13 u_d = Expression(’1 + x[0] + 2*x[1]’,degree =1)

14 f = Expression(’ -10*x[0] - 20*x[1] - 10’,degree =1)

15

16 def boundary(x,on_boundary):

17 return on_boundary

18

19 bc = DirichletBC(space ,u_d ,boundary)

20

21 u = Function(space)

22 v = TestFunction(space)

23

24 F = q(u)*dot(grad(u),grad(v))*dx - f*v*dx

25

26 solve(F==0,u,bc)

27

28 # plot(u)

29 File("nonlin_poisson.pvd") << (u,0.0)

The new consideration in this problem is that we must use a nonlinear solver. It is important to
note that for the nonlinear problem, the unknown function u used to construct the variational
form must be defined as a Function, not as a TrialFunction as in the linear case:

13

https://fenicsproject.org/olddocs/dolfin/1.3.0/python/demo/documented/nonlinear-poisson/python/documentation.html


u = Function(space)

v = TestFunction(space)

F = q(u)*dot(grad(u),grad(v))*dx - f*v*dx

The nonlinear solver is then set up simply by defining the formula for F (2.24) and using the
statement

solve(F == 0, u, bc)

instead of the usual solve(a == L, u, bc) used in the linear case. The solve function takes
the nonlinear equations and symbolically derives the Jacobian matrix. It then applies Newton’s
method to compute the solution. When the code is run, FEniCS reports the progress of each
Newton iteration, and we find that the problem converges in eight iterations with a tolerance of
10−9.
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3 Shallow shelf model

In this section we examine a FEniCS 2019.1.0 implementation of the shallow shelf model for
glaciological flow given by the Shelfy Stream Model presented in [10]. The implementation
follows [25]. The shallow shelf model for glaciological flow is a model for a marine ice sheet that
consists of a grounded portion sliding over its bed and an attached ice shelf. Assuming that
slip at the base of the ice is fast compared to shearing across the ice thickness, [24] derived the
model for horizontal components of ice velocity:

∂x
(
4hνux + 2hνvy

)
+ ∂y

(
hν(uy + vx)

)
− τxb = ρghsx, (3.1)

∂y
(
4hνvy + 2hνux

)
+ ∂x

(
hν(uy + vx)

)
− τyb = ρghsy, (3.2)

ν =

(
B

2

)−1/n∣∣∣∣u2
x + v2

y + uxvy +
1

4

(
uy + vx

)2∣∣∣∣ 1−n2n

, (3.3)

where h is vertical thickness, s is surface elevation, ρ is density, u and v are horizontal components
of ice velocity, τ b is basal stress determined by the sliding law f(u), ν is the viscosity, and B
and n are the coefficients in Glen’s law [17]. We consider n = 3 for all models in this report.
This model is defined on a periodic domain with a constant bed slope in the x direction and no
bed slope in the y direction.

The code for the FEniCS implementation of the shallow shelf model is provided in Appendix
A. The parameters used in this implementation are found in [8] and [9]. The domain is 40 × 40
km with 1 km resolution and a constant bed slope of −0.5◦ in the x direction. The bed has a
uniform thickness of H = 1000 m. The Glen’s law parameter B is defined as B = 2.1544 · 105

Pa(m a−1)−1/3 and n = 3 as in Table 1 of [8]. A linear sliding law f(u) = β2u is used with
sliding coefficient β2 defined as

β2 = 1000− 750 exp

(
−
(r

5

)2
)
, (3.4)

where r is the distance from the center of the domain in kilometers.

We first define the periodic boundary condition3. In order to maintain consistency in the units
of measurement, we convert all distances to meters. Therefore, the periodic boundary condition
is defined on a 40,000 m× 40,000 m domain with 40 grids along each axis so that the resolution
is 1,000 m. Due to the shape of the domain, the mesh is created with a RectangleMesh:

L_x = 40*10**3 # (GH pg 11)

L_y = 40*10**3

nx = ny = 40

mesh = RectangleMesh(Point (0,0),Point(L_x ,L_y),nx,ny,"crossed")

It is then necessary to defined a mixed finite element function space since the velocity vector u
has components u and v. The periodic boundary condition is included as an argument in the
FunctionSpace definition that specifies that all functions in V and ME have periodic boundary
conditions defined by periodic bc. U is defined as a Function in the mixed space ME which is
then split into the components u and v:

U = Function(ME ,name="u")

# split mixed functions

u, v = split(U)

The sliding coefficient β2 is then defined. The equation for β2 (3.4) is defined as an Expresssion

that is interpolated into the finite element space V:

beta_2 = Function(V, name="F")

3Doubly periodic boundary condition code supplied by primary supervisor, and as used in [25]
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fn = Expression("1000 - 750* exp(-1*(pow(x[0]-L_x/2, 2) + pow(x[1] - L_y/2, 2))

/25e6)",L_x = float(L_x),L_y = float(L_y),element=beta_2.function_space ().

ufl_element ())

beta_2.interpolate(fn)

The basal stress term τ b = β2u given by (12) from [9] can then be defined:

tau = beta_2 * U

We may now begin to construct the variational form of (3.1)–(3.2). To obtain the weak form of
(3.1), as usual, we multiply the equation by a test function ζu and integrate over the domain Ω.
Rearranging so all terms are on the same side, we obtain the abstract formulation

L0 =

∫
Ω

(
∂xζu

(
4hνux + 2hνvy

)
+ ∂yζu

(
hν(uy + vx)

)
+ ζuτ

x
b + ζuρghsx

)
dx. (3.5)

Similarly, the weak form of (3.2) is found to be

L1 =

∫
Ω

(
∂yζv

(
4hνvy + 2hνux

)
+ ∂xζv

(
hν(uy + vx)

)
+ ζvτ

y
b + ζvρghsy

)
dx, (3.6)

where ζv is another test function.

To implement the viscosity ν (3.3), the partial derivatives of u and v must be calculated, which
can easily be found with the use of the UFL differential operators described in Section 2.1.2:

u_x = u.dx(0)

u_y = u.dx(1)

v_x = v.dx(0)

v_y = v.dx(1)

After defining all necessary constants, we now have all the elements required to construct ν and
the variational form of (3.1)–(3.2):

nu = ((B/2)) * abs(u_x **2 + v_y **2 + u_x*v_y + 0.25*( u_y +v_x )**2 + Constant (1

e-12))**((1-n)/(2*n))

Here it is important to note the addition of a small ε term, ε = 10−12 m2 a−2, in order to avoid
errors resulting from division by 0. We can now construct the variational problem to be solved:

L0 = grad(zeta_u)[0]*(4*h*nu*u_x + 2*h*nu*v_y)*dx + grad(zeta_u)[1]*(h*nu*(u_y +

v_x))*dx + zeta_u*tau [0]*dx + zeta_u*rho*g*h*s_x*dx

L1 = grad(zeta_v)[1]*(4*h*nu*v_y + 2*h*nu*u_x)*dx + grad(zeta_v)[0]*(h*nu*(u_y +

v_x))*dx + zeta_v*tau [1]*dx + zeta_v*rho*g*h*s_y*dx

L = L0+L1

This is a nonlinear problem, so a NonlinearVariationalSolver is used. The chosen nonlinear
method is Newton’s method, so the Jacobian of the problem must be provided. This is easily
calculated using the derivative form operator described in Section 2.1.2:

Jac = derivative(L,U,dU)

We can then define the NonlinearVariationalProblem, which is used to define the
NonlinearVariationalSolver to solve the problem:

problem = NonlinearVariationalProblem(L, U, J=Jac)

solver = NonlinearVariationalSolver(problem)

With the chosen solver parameters, the solver converges after 10 iterations. Figure 3 provides a
visualization of the magnitude of the final velocity u over the domain.
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Figure 3: Final speed of ice sheet using the shallow shelf model.

Figure 4: Final speed of ice sheet using the shallow shelf model with approximated Newton’s
method.

17



Figure 5: Shallow shelf model solved with combination of approximated Newton’s method and
Newton’s method.

Let us now consider a more refined domain with a resolution of 0.5 km, i.e.,

nx = ny = 80

In this case we find that the Newton solver does not converge. Recall the requirements for the
convergence of Newton’s method [29]: Newton’s method will converge in second order if

1. the first derivative of L is nonzero in some neighborhood of the root α, and

2. the second derivative of L is continuous in that neighborhood of α, and

3. the initial guess is sufficiently close to α.

Assuming the problem with convergence is due to the initial guess not being sufficiently close
to the root for the more refined domain, we address this issue in the next section.

3.1 Approximated Newton’s Method

To address this problem of convergence, let us consider a methodology presented in [25] which
is an approximated Newton’s method. The main idea is that the u and v terms in the viscosity
ν(u, v) are now treated as constants, so that the chain rule is not applied to ν when the Jacobian
of the variational form is calculated. To do this, the variables w1 and w2 are introduced to replace
u and v, respectively, in (3.3):

W = Function(ME)

w1 ,w2 = split(W)

w1_x = w1.dx(0)

w1_y = w1.dx(1)

w2_x = w2.dx(0)

w2_y = w2.dx(1)

nu = ((B/2)) * abs(w1_x **2 + w2_y **2 + w1_x*w2_y + 0.25*( w1_y +w2_x )**2 +

Constant (1e-8))**((1 -n)/(2*n))
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The variational form L is constructed as before, except ν is now ν(w1, w2). The Jacobian is then
calculated by differentiating L with respect to U:

Jac = derivative(L,U,dU)

Now all instances of w1, w2 must be replaced with u, v. This is because the substitution was
solely to prevent differentiation of ν(u, v) when calculating the Jacobian. Now that the Jacobian
has been calculated, the entire problem must be converted back back so everything is in terms
of the original variables u and v. This is achieved using the UFL replace function:

L = ufl.replace(L,{W:U})

Jac = ufl.replace(Jac ,{W:U})

Using the same solver parameters as before with a resolution of 0.5 km, the problem converges in
22 iterations. The speed over the domain is presented in Figure 4. Through a visual comparison
it is evident that both methods result in the same solution. By comparing the magnitude of the
final velocity in both cases, we find that this is indeed true. Both methods result in a calculated
speed of |u| = 4637 m/yr with components |u| = 4636 m/yr and |v| = 49 m/yr. We find that the
problem with the original resolution of 1 km also converges in 22 iterations.

In this case, all iterations were calculated using the approximated Jacobian calculated where
the chain rule was not applied to the viscosity (3.3). Although this method still uses a Newton
solver, the use of an approximation to the Jacobian results in it being a first order method. To
achieve faster convergence to the solution, let us consider combining the approximated Newton’s
method with Newton’s method as proposed in [25]. The idea is to initially use the approximated
Newton’s method for a certain number of iterations until the iterated solution has progressed
far enough away from the problematic area that results in unstable convergence of the problem.
This solution is then used as the initial guess for Newton’s method to solve the problem in order
to have faster convergence than using a first order method for the entire problem. For this
combined method, the Jacobian must be calculated twice: once for the approximated Newton’s
method where the Chain Rule is not applied to ν(u, v) and again for Newton’s method where
the Chain Rule is fully applied.

The code for using Newton’s method in conjunction with the approximated Newton’s method
is provided in Appendix C. The initial setup is exactly the same as for using approximated
Newton’s method for the entire problem except for the maximum iterations allowed for the
solver, since we want the solver to terminate before the problem is solved. Since the problem
converged after 22 iterations with the approximated Newton’s method, 10 iterations seemed
reasonable to allow the problem to progress far enough away from the initial solution:

solver.parameters["newton_solver"]["maximum_iterations"] = 10

After the approximated Newton’s method solver terminates, the Jacobian is calculated for the
variational form that is in terms of u and v only and a new solver is initialized, with the solution
U from the approximated Newton solver used as the initial guess:

L2 = ufl.replace(L,{W:U})

Jac = derivative(L2 ,U,dU)

problem = NonlinearVariationalProblem(L2 , U,J=Jac)

solver2 = NonlinearVariationalSolver(problem)

L contained terms in W as well as U, whereas L2 is in terms of U only.

We find that after the initial 10 iterations for the approximated Newton solver, the problem
converges with 3 Newton iterations for domain resolutions of both 1 km and 0.5 km. The speed
of the ice sheet is displayed in Figure 5 and matches the results found using the other solver
methods.

The significant improvement here is that for a resolution of 0.5 km, Newton’s method did not
converge, the approximated Newton’s method converged in 22 iterations, and combining the two
methods resulted in convergence in 13 iterations. Newton’s method had the fastest convergence
for lower resolution domains but became unstable as the domain resolution was refined.
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4 Hybrid model: L1L2

In this section we consider the L1L2 hybrid model discussed in [8] and present an implementation
of the model using FEniCS 2019.1.0. This code is provided in Appendix D.

4.1 Problem formulation

The hybrid model in this section considers a variation to the first-order momentum balance
equations in Cartesian coordinates (1.1)–(1.3) given by Equations (20)–(25) of [8]. This is a
3-dimensional model for ice flow. The goal of the numerical scheme is to solve a 2-dimensional
PDE at each iterative step.

The classical form of the 2-D PDE system is given by

∂x
[
Hν̄(hy)(4ūx + 2v̄y)

]
+ ∂y

[
Hν̄(hy)(v̄x + ūy)

]
− τx = ρgHsx, (4.1)

∂x
[
Hν̄(hy)(v̄x + ūy)

]
+ ∂y

[
Hν̄(hy)(4v̄y + 2ūx)

]
− τy = ρgHsy, (4.2)

where a bar over a variable represents the 2-dimensional depth-average of the variable and H is
the vertical thickness. The effective viscosity ν(hy) given by

ν(hy) =
B

2

[
ū2
x + v̄2

y + ūxv̄
y +

1

4
(ūy + v̄x)2 +

1

4
u2
z +

1

4
v2
z

] 1−n
2n

. (4.3)

Expressions for uz and vz are given by

ν(hy)uz =
τx

H
(s− z), (4.4)

ν(hy)vz =
τy

H
(s− z), (4.5)

As in Section 3, a linear basal sliding law f(ub) = β2ub is used, with the coefficient β2 given by
(3.4). Additionally, the surface is at a 0.5◦ angle with the horizontal. Equations for the basal
stress τ are

τx =
mf(ub)

ub

(
1 + mf(ub)ω

ubH

) ū, (4.6)

τy =
mf(vb)

vb

(
1 + mf(vb)ω

vbH

) v̄, (4.7)

where m =
√

1 + b2x + b2y and

ω ≡
∫ s

b

∫ z

b

(s− z′)
Hν(hy)

dz′ dz. (4.8)

Rearranging the limits of integration, we have∫ s

b

∫ z

b

(s− z′)
Hν(hy)

dz′ dz =

∫ s

b

∫ s

z′

(s− z′)
Hν(hy)

dz dz′,

and by integrating the right-hand side we find

ω =

∫ s

b

(s− z)2

Hν(hy)
dz. (4.9)
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(4.1)–(4.9) are then used to form an iterative scheme with inputs u(i) and v(i), from which

ν
(i)
(hy), ω

(i), and β
(i)
eff can be diagnosed, where

β
(i)
eff =

mf(u
(i)
b )

u
(i)
b

(
1 +

mf(u
(i)
b )ω(i)

u
(i)
b H

) . (4.10)

The 2-dimensional PDE system (4.1)–(4.2) is then solved for ū(i+1) and v̄(i+1). Then τx(i+1) =

β
(i)
eff ū

(i+1), and u
(i+1)
z is calculated from (4.4) using ν

(i)
(hy). τ

y(i+1) and v
(i+1)
z are found in a similar

manner. This finishes one iteration of the model. Iteration is continued until the difference
between iterates is below a specified tolerance.

4.2 Implementation

We now examine an implementation of the iterative scheme described above using FEniCS
2019.1.0. With this 3-dimensional model, in addition to the parameters defined in Section 3,
the number of horizontal levels into which the new vertical component of ice is split must be
specified:

num_levels = 10 # number of horizontal layers

dz = float(h)/(num_levels -1)

As before, h is the vertical thickness of the ice sheet.

A new consideration is that several of the involved functions are elements of the P0 piecewise
constant discontinuous finite element space. Since u,v are in the P1 finite element space, their
derivatives are in the P0 finite element space. Additionally, any Function objects that interact
with the partial derivative terms must also be in the P0 space, defined in the code as V0:

V0 = FunctionSpace(mesh , "DG", 0, constrained_domain = periodic_bc)

The construction of a P0 space was not required for the shallow shelf model implementation
because the gradients of u and v were only used as part of the finite element assembly and were
not used in calculations with any Function objects. Therefore, they did not need to be stored
as P0 Function objects themselves.

In this implementation, U bar is used to represent the depth-averaged solution. z represents
the elevation z(x, y). nu hy is the effective viscosity, which varies in the vertical dimension. We
construct the 3-D variables as a series of “stacked” horizontal 2D functions defined on each layer:

nu_hy = [Function(V0) for i in range(num_levels -1)]

u_z = [Function(V0) for i in range(num_levels -1)]

v_z = [Function(V0) for i in range(num_levels -1)]

For the initial guess of the effective viscosity ν
(0)
(hy), we must add a small ε term to prevent division

by 0 in further calculations:

for i in range(num_levels -1):

nu_hy[i]. vector ()[:] += 1e-8

We also have an initial guess of the basal stress τx(0) and τy(0):

tau_x = Function(V0)

tau_y = Function(V0)

We can now construct the iteration loop. In each iteration, the partial derivatives of u(i) and
v(i) must be calculated. Note that in this case we do not want a purely symbolic differentiation
since we want to evaluate the value of the derivatives. Therefore, the symbolically differentiated
objects must be projected onto the P0 element space:

u_bar , v_bar = split(U_bar)

u_x = project(u_bar.dx(0),V0)

u_y = project(u_bar.dx(1),V0)
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v_x = project(v_bar.dx(0),V0)

v_y = project(v_bar.dx(1),V0)

u
(i+1)
z and v

(i+1)
z are then evaluated on each level by applying (4.4):

for i in range(num_levels -1):

u_z[i]. vector ()[:] = tau_x.vector ()[:]* ((i + 0.5)*dz)/( float(h)*nu_hy[i].

vector ()[:]) # G11 Eq. 31

v_z[i]. vector ()[:] = tau_y.vector ()[:]* ((i + 0.5)*dz)/( float(h)*nu_hy[i].

vector ()[:])

The next iterate of ν(hy) is calculated using (4.3), the depth-average of which is ν̄(hy), imple-
mented as nu hy bar:

nu_hy_bar = Function(V0)

# depth -average: add each layer , then divide by number of layers

for i in range(num_levels -1):

nu_hy_bar.vector ()[:] += nu_hy[i]. vector ()[:]

nu_hy_bar.vector ()[:] /= (num_levels -1)

Then ω(i) is numerically integrated by applying the Midpoint Rule to (4.9):

for i in range(num_levels - 1):

omega.vector ()[:] += (((i + 0.5)*dz)**2) / (float(h)*nu_hy[i]. vector ()[:])

omega.vector ()[:] *= dz # multiply sum by (b-a)/n

β
(i)
eff is implemented as beta eff with the approximation m = 1. We then calculated τx(i+1) and
τy(i+1):

tau_x = project(beta_eff * u_bar ,V0)

tau_y = project(beta_eff * v_bar ,V0)

As was done for the partial derivatives, tau x must be projected onto the P0 element space so
it can be used in future calculations. The variational problem is then constructed and solved
for ū(i+1) and v̄(i+1):

L0 = grad(zeta_u)[0]*(h*nu_hy_bar *(4* u_bar.dx(0) + 2*v_bar.dx(1)))*dx + grad(

zeta_u)[1]*(h*nu_hy_bar *(u_bar.dx(1) + v_bar.dx(0)))*dx + zeta_u*beta_eff*

u_bar*dx + zeta_u*rho*g*h*s_x*dx

L1 = grad(zeta_v)[1]*(h*nu_hy_bar *(4* v_bar.dx(1) + 2*u_bar.dx(0)))*dx + grad(

zeta_v)[0]*(h*nu_hy_bar *(u_bar.dx(1) + v_bar.dx(0)))*dx + zeta_v*beta_eff*

v_bar*dx + zeta_v*rho*g*h*s_y*dx

L = L0+L1

In this model, L is linear in U bar so a linear solver is used to solve the problem. To this end,
L can be converted to a combination of a bilinear form, called lhs in this case, and linear form
rhs, where lhs is a function of the test and trial functions. The trial function is introduced into
L with the following:

ufl.replace(L, {U_bar: dU})

We can then extract the bilinear and linear forms:

lhs , rhs = system(ufl.replace(L, {U_bar: dU}))

Now the LinearVariationalSolver can be constructed and solver parameters may be spec-
ified. Since the periodic boundary condition is already taken into consideration for all the
FunctionSpace elements, the final boundary condition argument is not needed for the construc-
tion of the LinearVariationalProblem.

problem = LinearVariationalProblem(lhs ,rhs , U_bar , [])

solver = LinearVariationalSolver(problem)

solver.solve ()

With a relative tolerance of 10−8, this problem converges in 52 iterations. The final speed is
visualized of the ice sheet in Figure 6. This is due to the form of β2 (3.4) which places a “slippery
spot” in the center of the domain. In both the shallow shelf and hybrid models we see that ice
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moves faster in the center of the domain. However, the maximum speed of ice flow is noticeably
different for the two models: for the shallow shelf model, the ice in the center of the domain
moves at 120 m/yr, whereas for the hybrid model the ice in the center of the domain moves
at 150 m/yr. Compared to the shallow shelf model, there is a 25% increase in speed for the
hybrid model. Note here that the quantities calculated for the shallow shelf model (Figures 3–5)
and the hybrid model are slightly different, as Figure 6 represents the depth-averaged velocity
of the ice sheet. For a more accurate comparison we must calculate the surface velocity, which
presents some scope for further study, as discussed in Section 5

The variational form of the shallow shelf model was relatively simple, which allowed us to simply
use FEniCS’s available derivative operator to calculate the Jacobian of the variational form.
Thus the problem was solved using FEniCS’s Newton solver. The formulation for the hybrid
model, on the other hand, is much more complicated. The variational form does not allow for
automatic calculation of the Jacobian. Therefore, for this implementation it was necessary to
build a fixed-point iteration ourselves and solve a linear variational problem in each iteration.
DOLFIN is equipped to handle this efficiently. The first time the form was encountered in
the execution of the program, the necessary code was automatically generated, compiled, and
cached. The JIT compiler then recognized the form on subsequent iterations and reused the
generated code.

Figure 6: Depth-averaged speed of ice sheet calculated from L1L2 model.
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5 Conclusions

We have explored the functionality of FEniCS by solving several classic PDE problems, as well
as studying several simplified glaciological models. A core component of the FEniCS Project is
the DOLFIN library, which largely automates the finite element approximation of solutions to
PDEs. DOLFIN uses a compiler for automatic generation of problem-specific code. This allows
for efficient assembly of a wide variety of variational forms from a previously unavailable array
of finite elements. Expression of finite element discretizations of variational forms is handled
by the UFL library. UFL enables users to construct variational forms in a intuitive language
that resembles mathematical notation. In fact, it is not even necessary for the user to explicitly
formulate the linear and bilinear forms of the problem. As demonstrated when solving the
heat problem in Section 2.2.2, it suffices to provide FEniCS with the abstract formulation of
the variational problem. FEniCS can then determine the linear and bilinear forms needed to
solve the problem itself. This feature was especially important in Chapter 4 as it allowed us to
automatically extract the linear and bilinear forms of a complicated variational problem.

In the latter part of Chapter 2 we studied several demo problems in preparation for the more
complicated PDEs we would study later in the report. Let us consider some crucial insights
from these demo problems: how to use FEniCS to solve both linear and nonlinear variational
problems; how to construct symbolic expressions and function objects, and how to project or
interpolate them into a discretized finite element space; and how to symbolically differentiate
forms, which is necessary for applying Newton’s method and other nonlinear solvers.

In Chapter 3 we used FEniCS to solve a shallow shelf model for glaciological flow. For this
simplified model, FEniCS’s powerful functionality allowed for symbolically differentiation of
the variational form of the problem. Thus it was sufficient to use the available Newton solver
to find the solution of the problem. However, we also found that Newton’s method was not a
stable solver for more refined meshes. This led to the introduction of the approximated Newton’s
method presented in [25]. This method resulted in convergence in the first order for more refined
grid spacings. To improve the order of convergence we then used the approximated Newton’s
method in conjunction with Newton’s method to achieve faster convergence on higher resolution
domains than solely using the first-order method.

In Chapter 4 we examined a 3-dimensional model for glaciological flow. By integrating over the
vertical dimension this model was reduced to a 2-dimensional PDE system that was solved at
each iterative step. This model had a variational form that was too complicated to automatically
symbolically differentiate. Therefore, it could not be solved using FEniCS’s available nonlinear
variational solvers. As a result, a fixed-point iteration of velocity was implemented with a linear
variational solver to solve a new variational problem in each iteration. Here, DOLFIN’s form
compiler proved crucial in improving the efficiency of the program, as it generated code only the
first time the variational form was encountered in the execution of the program. This code was
compiled and cached, and the JIT compiler recognized the form in subsequent iterations and so
the generated code could be reused.

With both models we found that ice moves faster in the center of the domain where the “slippery
spot” is located. There is an approximate 25% increase in the speed of the ice in the center
of the domain using the hybrid model, in which ice moves at 150 m/yr, in comparison to the
shallow shelf model, in which ice moves at 120 m/yr in the center.

Future work As noted previously, in this report the final quantity calculated from the hybrid
model is the depth-averaged velocity of the ice sheet. An obvious next step would be to calculate
the surface velocity of the ice sheet, as this is actually an observable quantity and so solutions
could be compared to physical observations. A possible model to solve for surface velocity is
presented in [13]. Additionally, in all our experiments the vertical thickness of the ice was
treated as constant. For a more physically realistic model, we may consider models in which the
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thickness of ice varies over the horizontal domain, or with time as examined in [9].
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Appendices

A Shallow shelf implementation with Newton solver

1 from dolfin import *

2 import ufl

3

4 class PeriodicBoundaryCondition(SubDomain):

5 # Following FEniCS 2017.1.0 API

6 def inside(self , x, on_boundary):

7 return (abs(x[0]) < 1.0e-8 or abs(x[1]) < 1.0e-8) and abs(x[0] - L_x) > 1.0e

-8 and abs(x[1] - L_y) > 1.0e-8

8 def map(self , x, y):

9 if abs(x[0] - L_x) < 1.0e-8:

10 if abs(x[1] - L_y) < 1.0e-8:

11 y[0] = 0.0

12 y[1] = 0.0

13 else:

14 y[0] = 0.0

15 y[1] = x[1]

16 elif abs(x[1] - L_y) < 1.0e-8:

17 y[0] = x[0]

18 y[1] = 0.0

19 else:

20 y[:] = -1.0e10

21 L_x = 40*10**3 # (GH pg 11)

22 L_y = 40*10**3

23 periodic_bc = PeriodicBoundaryCondition ()

24

25 # Create mesh and define function spaces

26 nx = ny = 40

27 mesh = RectangleMesh(Point (0,0),Point(L_x ,L_y),nx,ny,"crossed")

28 V = FunctionSpace(mesh , "Lagrange", 1, constrained_domain = periodic_bc)

29 ME = FunctionSpace(mesh , V.ufl_element ()*V.ufl_element (),constrained_domain =

periodic_bc)

30

31 # Define trial and test functions

32 dU = TrialFunction(ME)

33 zeta_u , zeta_v = TestFunctions(ME)

34

35 # Define functions

36 U = Function(ME ,name="u") # in mixed function space , is vector containing u and

v

37

38 # split mixed functions

39 u, v = split(U)

40 u_x = u.dx(0)

41 u_y = u.dx(1)

42 v_x = v.dx(0)

43 v_y = v.dx(1)

44

45 beta_2 = Function(V, name="F")

46 fn = Expression("1000 - 750* exp(-1*(pow(x[0]-L_x/2, 2) + pow(x[1] - L_y/2, 2))

/25e6)",L_x = float(L_x),L_y = float(L_y),element=beta_2.function_space ().

ufl_element ())

47 beta_2.interpolate(fn)

48

49 B = Constant (2.1544 e5) #G11 Table 1

50 n = Constant (3.0, name=’n’) # n = 3 used in all computations

51 h = Constant (1000 , name=’h’) # GH13 pg. 11

52 s_x = Constant(tan(-0.5 * pi /180)) # slope of -0.5 degrees

53 s_y = Constant (0.0)

54 rho = Constant (910, name=’rho’) # G11 Table 1

55 g = Constant (9.81) # G11 Table 1

56

29



57 tau = beta_2 * U

58

59 nu = ((B/2)) * abs(u_x **2 + v_y **2 + u_x*v_y + 0.25*( u_y +v_x )**2 + Constant (1

e-8))**((1-n)/(2*n)) # add small eps to prevent division by 0; G11 Eq 16

60

61 L0 = grad(zeta_u)[0]*(4*h*nu*u_x + 2*h*nu*v_y)*dx + grad(zeta_u)[1]*(h*nu*(u_y +

v_x))*dx + zeta_u*tau [0]*dx + zeta_u*rho*g*h*s_x*dx

62 L1 = grad(zeta_v)[1]*(4*h*nu*v_y + 2*h*nu*u_x)*dx + grad(zeta_v)[0]*(h*nu*(u_y +

v_x))*dx + zeta_v*tau [1]*dx + zeta_v*rho*g*h*s_y*dx

63 L = L0+L1

64

65 Jac = derivative(L,U,dU) # Jacobian

66

67 problem = NonlinearVariationalProblem(L, U, J=Jac)

68 solver = NonlinearVariationalSolver(problem)

69 solver.parameters["nonlinear_solver"] = "newton"

70 solver.parameters["newton_solver"]["linear_solver"] = "umfpack"

71 solver.parameters["newton_solver"]["convergence_criterion"] = "incremental"

72 solver.parameters["newton_solver"]["relative_tolerance"] = 1e-6

73 solver.parameters["newton_solver"]["absolute_tolerance"] = 1e-16

74 solver.parameters["newton_solver"]["maximum_iterations"] = 3000

75 solver.parameters["newton_solver"]["lu_solver"]["symmetric"] = True

76

77 solver.solve ()

78

79 # Output file

80 file = File("ss_old.pvd", "compressed")

81 file << (U,0.0)

B Approximated Newton’s method implementation

1 from dolfin import *

2 import ufl

3

4 class PeriodicBoundaryCondition(SubDomain):

5 # Following FEniCS 2017.1.0 API

6 def inside(self , x, on_boundary):

7 return (abs(x[0]) < 1.0e-8 or abs(x[1]) < 1.0e-8) and abs(x[0] - L_x) > 1.0e

-8 and abs(x[1] - L_y) > 1.0e-8

8 def map(self , x, y):

9 if abs(x[0] - L_x) < 1.0e-8:

10 if abs(x[1] - L_y) < 1.0e-8:

11 y[0] = 0.0

12 y[1] = 0.0

13 else:

14 y[0] = 0.0

15 y[1] = x[1]

16 elif abs(x[1] - L_y) < 1.0e-8:

17 y[0] = x[0]

18 y[1] = 0.0

19 else:

20 y[:] = -1.0e10

21 L_x = 40*10**3 # (GH pg 11)

22 L_y = 40*10**3

23 periodic_bc = PeriodicBoundaryCondition ()

24

25 # Create mesh and define function spaces

26 nx = ny = 40

27 mesh = RectangleMesh(Point (0,0),Point(L_x ,L_y),nx,ny,"crossed")

28 V = FunctionSpace(mesh , "Lagrange", 1, constrained_domain = periodic_bc)

29 ME = FunctionSpace(mesh , V.ufl_element ()*V.ufl_element (),constrained_domain =

periodic_bc)

30

31 # Define trial and test functions

32 dU = TrialFunction(ME)

33 zeta_u , zeta_v = TestFunctions(ME)
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34

35 # Define functions

36 U = Function(ME ,name="u")

37

38 # split mixed functions

39 du, dv = split(dU)

40 u, v = split(U)

41

42 beta_2 = Function(V)

43 fn = Expression("1000 - 750* exp(-1*(pow(x[0]-L_x/2, 2) + pow(x[1] - L_y/2, 2))

/25e6)",L_x = float(L_x),L_y = float(L_y),element=beta_2.function_space ().

ufl_element ())

44 beta_2.interpolate(fn)

45

46 B = Constant (2.1544 e5) #G11 Table 1

47 n = Constant (3.0, name=’n’) # n = 3 used in all computations

48 h = Constant (1000 , name=’h’) # GH13 pg. 11

49 s_x = Constant(tan(-0.5 * pi /180)) # slope of -0.5 degrees

50 s_y = Constant (0.0)

51 rho = Constant (910, name=’rho’) # G11 Table 1

52 g = Constant (9.81) # G11 Table 1

53

54 tau = beta_2 * U

55

56 W = Function(ME)

57 w1,w2 = split(W)

58

59 u_x = u.dx(0)

60 u_y = u.dx(1)

61 v_x = v.dx(0)

62 v_y = v.dx(1)

63

64 w1_x = w1.dx(0)

65 w1_y = w1.dx(1)

66 w2_x = w2.dx(0)

67 w2_y = w2.dx(1)

68

69

70 nu = ((B/2)) * abs(w1_x **2 + w2_y **2 + w1_x*w2_y + 0.25*( w1_y +w2_x )**2 +

Constant (1e-12))**((1 -n)/(2*n)) # add small eps to prevent division by 0

71

72 L0 = grad(zeta_u)[0]*(4*h*nu*u_x + 2*h*nu*v_y)*dx + grad(zeta_u)[1]*(h*nu*(u_y +

v_x))*dx + zeta_u*tau [0]*dx + zeta_u*rho*g*h*s_x*dx

73 L1 = grad(zeta_v)[1]*(4*h*nu*v_y + 2*h*nu*u_x)*dx + grad(zeta_v)[0]*(h*nu*(u_y +

v_x))*dx + zeta_v*tau [1]*dx + zeta_v*rho*g*h*s_y*dx

74 L = L0+L1

75

76 Jac = derivative(L,U,dU) # Jacobian

77 L = ufl.replace(L,{W:U})

78 Jac = ufl.replace(Jac ,{W:U})

79

80 problem = NonlinearVariationalProblem(L, U, J=Jac)

81 solver = NonlinearVariationalSolver(problem)

82 solver.parameters["nonlinear_solver"] = "newton"

83 solver.parameters["newton_solver"]["linear_solver"] = "umfpack"

84 solver.parameters["newton_solver"]["convergence_criterion"] = "incremental"

85 solver.parameters["newton_solver"]["relative_tolerance"] = 1e-6

86 solver.parameters["newton_solver"]["absolute_tolerance"] = 1e-16

87 solver.parameters["newton_solver"]["maximum_iterations"] = 3000

88 solver.parameters["newton_solver"]["lu_solver"]["symmetric"] = True

89

90 solver.solve()

91

92 # Output file

93 file = File("shallowshelf.pvd", "compressed")

94 file << (U,0.0)
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C Combining Approximated Newton’s Method with Newton’s
Method

1 from dolfin import *

2 import ufl

3

4 class PeriodicBoundaryCondition(SubDomain):

5 # Following FEniCS 2017.1.0 API

6 def inside(self , x, on_boundary):

7 return (abs(x[0]) < 1.0e-8 or abs(x[1]) < 1.0e-8) and abs(x[0] - L_x) > 1.0e

-8 and abs(x[1] - L_y) > 1.0e-8

8 def map(self , x, y):

9 if abs(x[0] - L_x) < 1.0e-8:

10 if abs(x[1] - L_y) < 1.0e-8:

11 y[0] = 0.0

12 y[1] = 0.0

13 else:

14 y[0] = 0.0

15 y[1] = x[1]

16 elif abs(x[1] - L_y) < 1.0e-8:

17 y[0] = x[0]

18 y[1] = 0.0

19 else:

20 y[:] = -1.0e10

21 L_x = 40*10**3 # (GH pg 11)

22 L_y = 40*10**3

23 periodic_bc = PeriodicBoundaryCondition ()

24

25 # Create mesh and define function spaces

26 nx = ny = 40

27 mesh = RectangleMesh(Point (0,0),Point(L_x ,L_y),nx,ny,"crossed")

28 V = FunctionSpace(mesh , "Lagrange", 1, constrained_domain = periodic_bc)

29 ME = FunctionSpace(mesh , V.ufl_element ()*V.ufl_element ())

30

31 # Define trial and test functions

32 dU = TrialFunction(ME)

33 zeta_u , zeta_v = TestFunctions(ME)

34

35 # Define functions

36 U = Function(ME ,name="u")

37

38 # split mixed functions

39 u, v = split(U)

40 u_x = u.dx(0)

41 u_y = u.dx(1)

42 v_x = v.dx(0)

43 v_y = v.dx(1)

44

45 beta_2 = Function(V, name="F")

46 fn = Expression("1000 - 750* exp(-1*(pow(x[0]-L_x/2, 2) + pow(x[1] - L_y/2, 2))

/25e6)",L_x = float(L_x),L_y = float(L_y),element=beta_2.function_space ().

ufl_element ())

47 beta_2.interpolate(fn)

48

49 B = Constant (2.1544 e5) #G11 Table 1

50 n = Constant (3.0, name=’n’) # n = 3 used in all computations

51 h = Constant (1000 , name=’h’) # GH13

52 s_x = Constant(tan(-0.5 * pi /180)) # slope of -0.5 degrees

53 s_y = Constant (0.0)

54 rho = Constant (910, name=’rho’) # G11 Table 1

55 g = Constant (9.81) # G11 Table 1

56

57 tau = beta_2 * U

58

59 W = Function(ME)
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60 w1,w2 = split(W)

61 w1_x = w1.dx(0)

62 w1_y = w1.dx(1)

63 w2_x = w2.dx(0)

64 w2_y = w2.dx(1)

65

66

67 nu = ((B/2)) * abs(w1_x **2 + w2_y **2 + w1_x*w2_y + 0.25*( w1_y +w2_x )**2 +

Constant (1e-8))**((1 -n)/(2*n)) # add small eps to prevent division by 0; G11

Eq 16

68

69 L0 = grad(zeta_u)[0]*(4*h*nu*u_x + 2*h*nu*v_y)*dx + grad(zeta_u)[1]*(h*nu*(u_y +

v_x))*dx + zeta_u*tau [0]*dx + zeta_u*rho*g*h*s_x*dx

70 L1 = grad(zeta_v)[1]*(4*h*nu*v_y + 2*h*nu*u_x)*dx + grad(zeta_v)[0]*(h*nu*(u_y +

v_x))*dx + zeta_v*tau [1]*dx + zeta_v*rho*g*h*s_y*dx

71 L = L0+L1

72

73 Jac = derivative(L,U,dU) # Jacobian

74 L2 = ufl.replace(L,{W:U})

75 Jac2 = ufl.replace(Jac ,{W:U})

76

77 problem = NonlinearVariationalProblem(L2 , U, J=Jac2)

78 solver = NonlinearVariationalSolver(problem)

79 solver.parameters["nonlinear_solver"] = "newton"

80 solver.parameters["newton_solver"]["linear_solver"] = "umfpack"

81 solver.parameters["newton_solver"]["convergence_criterion"] = "incremental"

82 solver.parameters["newton_solver"]["relative_tolerance"] = 1e-6

83 solver.parameters["newton_solver"]["absolute_tolerance"] = 1e-16

84 solver.parameters["newton_solver"]["maximum_iterations"] = 10

85 solver.parameters["newton_solver"]["lu_solver"]["symmetric"] = True

86

87 try:

88 solver.solve ()

89 except RuntimeError:

90 pass

91

92

93 Jac = derivative(L2 ,U,dU)

94

95 problem = NonlinearVariationalProblem(L2 , U,J=Jac)

96 solver2 = NonlinearVariationalSolver(problem)

97 solver2.parameters["nonlinear_solver"] = "newton"

98 solver2.parameters["newton_solver"]["linear_solver"] = "umfpack"

99 solver2.parameters["newton_solver"]["convergence_criterion"] = "incremental"

100 solver2.parameters["newton_solver"]["relative_tolerance"] = 1e-6

101 solver2.parameters["newton_solver"]["absolute_tolerance"] = 1e-16

102 solver2.parameters["newton_solver"]["maximum_iterations"] = 3000

103 solver2.parameters["newton_solver"]["lu_solver"]["symmetric"] = True

104

105 solver2.solve()

106

107 # Output file

108 file = File("dual_shallowshelf.pvd", "compressed")

109 file << (U,0.0)

D L1L2 Implementation

1 from dolfin import *

2 import ufl

3

4 class PeriodicBoundaryCondition(SubDomain):

5 # Following FEniCS 2017.1.0 API

6 def inside(self , x, on_boundary):

7 return (abs(x[0]) < 1.0e-8 or abs(x[1]) < 1.0e-8) and abs(x[0] - L_x) > 1.0e

-8 and abs(x[1] - L_y) > 1.0e-8

8 def map(self , x, y):
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9 if abs(x[0] - L_x) < 1.0e-8:

10 if abs(x[1] - L_y) < 1.0e-8:

11 y[0] = 0.0

12 y[1] = 0.0

13 else:

14 y[0] = 0.0

15 y[1] = x[1]

16 elif abs(x[1] - L_y) < 1.0e-8:

17 y[0] = x[0]

18 y[1] = 0.0

19 else:

20 y[:] = -1.0e10

21

22 L_x = 40*10**3 # (GH pg 11)

23 L_y = 40*10**3

24 periodic_bc = PeriodicBoundaryCondition ()

25

26 # Create mesh and define function spaces

27 num_levels = 10 # number of horizontal layers

28 nx = ny = 40

29 mesh = RectangleMesh(Point (0,0),Point(L_x ,L_y),nx,ny,"crossed")

30 V = FunctionSpace(mesh , "Lagrange", 1, constrained_domain = periodic_bc)

31 V0 = FunctionSpace(mesh , "DG", 0, constrained_domain = periodic_bc)

32 ME = FunctionSpace(mesh , V.ufl_element ()*V.ufl_element (),constrained_domain =

periodic_bc)

33

34 # Define trial and test functions

35 dU = TrialFunction(ME)

36 zeta_u , zeta_v = TestFunctions(ME)

37

38 # Define functions

39 U_bar = Function(ME ,name="u_bar")

40

41 beta_2 = Function(V, name="F")

42 fn = Expression("1000 - 750* exp(-1*(pow(x[0]-L_x/2, 2) + pow(x[1] - L_y/2, 2))

/25e6)",L_x = float(L_x),L_y = float(L_y),element=beta_2.function_space ().

ufl_element ())

43 beta_2.interpolate(fn)

44

45 B = Constant (2.1544 e5) #G11 Table 1

46 n = Constant (3.0, name=’n’) # n = 3 used in all computations

47 h = Constant (1000 , name=’h’) # GH13

48 rho = Constant (910, name=’rho’) # G11 Table 1

49 g = Constant (9.81) # G11 Table 1

50 s_x = Constant(tan(-0.5 * pi /180)) # slope of -0.5 degrees

51 s_y = Constant (0.0)

52

53 z = Function(V, name="z") # elevation

54

55 tau_x = Function(V0)

56 tau_y = Function(V0)

57

58 nu_hy = [Function(V0) for i in range(num_levels -1)]

59

60 # add small eps to prevent division by 0

61 for i in range(num_levels -1):

62 nu_hy[i]. vector ()[:] += 1e-8

63

64 u_z = [Function(V0) for i in range(num_levels -1)]

65 v_z = [Function(V0) for i in range(num_levels -1)]

66

67 dz = float(h)/(num_levels -1)

68

69 temp_nu_hy_bar = Function(V0)

70

71 U_old = U_bar.copy(deepcopy=True)

34



72

73 num_it = 0

74 tol = 1e-8

75 while num_it < 3000:

76 omega = Function(V0 , name="omega") # G11 Eq. 35

77 u_bar , v_bar = split(U_bar)

78 u_x = project(u_bar.dx(0),V0)

79 u_y = project(u_bar.dx(1),V0)

80 v_x = project(v_bar.dx(0),V0)

81 v_y = project(v_bar.dx(1),V0)

82

83 # (s-z) = (i + 0.5)*dz

84 for i in range(num_levels -1):

85 u_z[i]. vector ()[:] = tau_x.vector ()[:]* ((i + 0.5)*dz)/( float(h)*nu_hy[i].

vector ()[:]) # G11 Eq. 31

86 v_z[i]. vector ()[:] = tau_y.vector ()[:]* ((i + 0.5)*dz)/( float(h)*nu_hy[i].

vector ()[:])

87

88 temp_nu_hy_bar.vector ()[:] = u_x.vector () [:]**2 + v_y.vector () [:]**2 + u_x.

vector ()[:]* v_y.vector ()[:] + 0.25*( u_y.vector ()[:] + v_x.vector ()[:]) **2 +

1e-12# G11 2d terms of Eq. 16

89

90 for i in range(num_levels -1):

91 nu_hy[i]. vector ()[:] = (float(B)/2) * (temp_nu_hy_bar.vector ()[:] + 0.25*(

u_z[i]. vector () [:]**2 + v_z[i]. vector () [:]**2 ))**((1- float(n))/(2* float(n))

) # G11 Eq. 16

92

93 nu_hy_bar = Function(V0)

94 # depth -average: add each layer , then divide by number of layers

95 for i in range(num_levels -1):

96 nu_hy_bar.vector ()[:] += nu_hy[i]. vector ()[:]

97

98 nu_hy_bar.vector ()[:] /= (num_levels -1)

99

100 # integrand: (s-z)^2 / h* nu_hy(z) dz

101 for i in range(num_levels - 1):

102 #omega.vector ()[:] += (float(h) - (i + 0.5)*dz)**2 / (float(h)*nu_hy[

num_levels - 2 - i]. vector ()[:])

103 omega.vector ()[:] += (((i + 0.5)*dz)**2) / (float(h)*nu_hy[i]. vector ()[:])

104

105 omega.vector ()[:] *= dz # multiply sum by (b-a)/n

106

107 m = 1

108 frac = (m*beta_2*omega)/h

109 beta_eff = m*beta_2 /(1 + frac) # G11 Eq. 41 with cancellation due to f(u) =

beta^2 * u (should be strictly nonnegative)

110

111 tau_x = project(beta_eff * u_bar ,V0)

112 tau_y = project(beta_eff * v_bar ,V0)

113

114 L0 = grad(zeta_u)[0]*(h*nu_hy_bar *(4* u_bar.dx(0) + 2*v_bar.dx(1)))*dx + grad(

zeta_u)[1]*(h*nu_hy_bar *(u_bar.dx(1) + v_bar.dx(0)))*dx + zeta_u*beta_eff*

u_bar*dx + zeta_u*rho*g*h*s_x*dx

115 L1 = grad(zeta_v)[1]*(h*nu_hy_bar *(4* v_bar.dx(1) + 2*u_bar.dx(0)))*dx + grad(

zeta_v)[0]*(h*nu_hy_bar *(u_bar.dx(1) + v_bar.dx(0)))*dx + zeta_v*beta_eff*

v_bar*dx + zeta_v*rho*g*h*s_y*dx

116 L = L0+L1

117

118 lhs , rhs = system(ufl.replace(L, {U_bar: dU}))

119 problem = LinearVariationalProblem(lhs ,rhs , U_bar , [])

120 solver = LinearVariationalSolver(problem)

121

122 solver.parameters["linear_solver"] = "umfpack"

123 solver.solve ()

124

125 if (U_old.vector () - U_bar.vector ()).norm(’l2’) <= tol * U_bar.vector ().norm(’
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l2’):

126 break

127

128 U_old = U_bar.copy(deepcopy=True)

129 num_it += 1

130 # Output file

131 print(’num_it =’,num_it)

132 file = File("l1l2_try4.pvd", "compressed")

133 file << (U_bar ,0.0)

36


	Introduction
	Glaciological models
	Outline of thesis

	FEniCS
	Code generation
	DOLFIN
	Unified Form Language (UFL)

	Demo problems
	Poisson equation
	Heat equation
	Nonlinear Poisson equation


	Shallow shelf model
	Approximated Newton's Method

	Hybrid model: L1L2
	Problem formulation
	Implementation

	Conclusions
	Appendices
	Shallow shelf implementation with Newton solver
	Approximated Newton's method implementation
	Combining Approximated Newton's Method with Newton's Method
	L1L2 Implementation

